

Properties of Regular Languages

- Decision Properties of Regular Languages
- Closure Properties of Regular Languages
- Equivalence and Minimization of Automata

Decision Properties

 of Regular Languages| Question: | Decision Properties of RLs
 Given regular language L
 and string W
 how can we check if $w \in L ?$ |
| :--- | :--- |
| Answer: | Take the DFA that accepts L
 and check if W is accepted |

	Decision Properties of RLs
Question:	Given regular language L how can we check if L is empty: $(L=\varnothing)$
Answer: \quadTake the DFA that accepts L Check if there is any path from the initial state to a final state	

Decision Properties of RLs

Decision Properties of RLs

How can we prove that a language L
is not regular?
Prove that there is no DFA that accepts L

Problem: this is not easy to prove

Solution: the Pumping Lemma !!!

The Pigeonhole Principle

The Pumping Lemma Motivation
Consider the language
$\mathrm{LI}=01 *=\{0,0 I, 0 I I, 0 I I I, \ldots\}$
The string $0 I I$ is said to be pumpable in LI because
can take the underlined portion, and pump it up (i.e.
repeat) as much as desired while always getting
elements in LI .

If string w has length $|w| \geq 4$:
Then the transitions of string w are more than the states of the DFA

Thus, a state must be repeated

Costas Busch - RPI

Closure Properties of RL's

Language operations for the above statement to be true include:

- Union
- Closure (star)
- Intersection
- Complement
- Difference
- Reversal
- Concatenation
- Homomorphism
- Inverse homomorphism

Operations on Languages

- The usual set operations

$$
\begin{aligned}
& \{a, a b, a a a a\} \cup\{b b, a b\}=\{a, a b, b b, a a a a\} \\
& \{a, a b, a a a\}\}\{b b, a b\}=\{a b\} \\
& \{a, a b, a a a\}-\{b b, a b\}=\{a, a a a a\} \\
& \text { - Complement: } \\
& \qquad \begin{array}{l}
L=\Sigma^{*}-L
\end{array} \\
& \qquad\{a, b a\}=\{\lambda, b, a a, a b, b b, a a a, \ldots\}
\end{aligned}
$$

Closure Properties of RL's

Closure under Union:

Let L and M two languages, then their union is defined by:

$$
L \cup M=\{w: w \in L \text { or } w \in M\}
$$

Let A_{L} and A_{M} two finite automata accepting L and M respectively:

Example:
$-L_{1}=\left\{0 x \mid x \in\{0,1\}^{*}\right\}=$ strings that start with 0
$-L_{2}=\left\{x 0 \mid x \in\{0,1\}^{*}\right\}=$ strings that end with 0
$-L_{1} \cup L_{2}=\left\{x \in\{0, I\}^{*} \mid x\right.$ starts with 0 or ends with 0 (or both) $\}$

Closure Properties of RL's

Closure under Union:
If L_{1} and L_{2} are any regular languages, $L_{1} \cup L_{2}$ is also a regular language.

Proof I: Using DeMorgan's laws

- Because the regular languages are closed for intersection and complement, we know they must also be closed for union

$$
L_{1} \cup L_{2}=\overline{\overline{L_{1}} \cap \overline{L_{2}}}
$$

Closure Properties of RL's
Closure under Union:
If L_{1} and L_{2} are any regular languages, $L_{1} \cup L_{2}$ is also
a regular language.
Proof 2: Product construction

- Same as for intersection, but with different accepting
states
- Accept where either (or both) of the original DFAs
accept
- Accepting state set is $\left(F_{1} \times R\right) \cup\left(Q \times F_{2}\right)$

Closure Properties of RL's

Closure under Intersection:
Let L and M two languages, then their intersection is defined by:

$$
\mathrm{LI} \cap \mathrm{~L} 2=\{x \mid x \in \mathrm{LI} \text { and } x \in \mathrm{~L} 2\}
$$

Let A_{L} and A_{M} two finite automata accepting L and M respectively:

Example:
$-L_{1}=\left\{0 x \mid x \in\{0,1\}^{*}\right\}=$ strings that start with 0
$-L_{2}=\left\{x 0 \mid x \in\{0,1\}^{*}\right\}=$ strings that end with 0
$-L_{1} \cap L_{2}=\left\{x \in\{0, I\}^{*} \mid x\right.$ starts and ends with 0$\}$

Closure Properties of RL's

Closure under Complement:
For any language L over an alphabet Σ, the complement of L is

$$
\bar{L}=\left\{x \in \Sigma^{*} \mid x \notin L\right\}
$$

Example: $L=\left\{0 x \mid x \in\{0,1\}^{*}\right\}$ Strings that start with zero

$$
\bar{L}=\left\{1 x \mid x \in\{0,1\}^{*}\right\} \cup\{\varepsilon\} \begin{aligned}
& \text { Strings that do not } \\
& \text { start with zero }
\end{aligned}
$$

Closure Properties of RL's

Closure under Reversal:
The reversal L^{R} of a language L is the language consisting of the reversals of all its strings.

The reversal of a string $w=a_{1} a_{2}, \ldots a_{n}$ is $w^{R}=a_{n} a_{n-}$ ${ }_{1} . a_{2} a_{1}$.

\quad Closure Properties of RL's
Closure under Reversal:
The reversal L^{R} of a language L is the language
consisting of the reversals of all its strings.
The reversal of a string $w=a_{1} a_{2}, \ldots a_{n}$ is $w^{R}=a_{n} a_{n-}$
$1 \ldots a_{2} a_{1}$.

Closure Properties of RL’s

Closure under Intersection:
If L_{1} and L_{2} are any regular languages, $L_{1} \cap L_{2}$ is also a regular language.
Let L_{1} and L_{2} be any regular languages. By definition:
$M_{1}=\left(Q, \Sigma, \delta_{1}, q_{0}, F_{1}\right)$ with $L\left(M_{1}\right)=L_{1}$
$M_{2}=\left(R, \Sigma, \delta_{2}, r_{0}, F_{2}\right)$ with $L\left(M_{2}\right)=L_{2}$
Define a new DFA $M_{3}=\left(Q \times R, \Sigma, \delta,\left(q_{0}, r_{0}\right), F_{1} \times F_{2}\right)$
For δ, define it so that for all $q \in Q, r \in R$, and $a \in \Sigma$, we have $\delta((q, r), a)=\left(\delta_{1}(q, a), \delta_{2}(r, a)\right)$
M_{3} accepts if and only if both M_{1} and M_{2} accept So $L\left(M_{3}\right)=L_{1} \cap L_{2}$, so that intersection is regular

Closure Properties of RL's

Closure under Reversal:
Definition: $\quad L^{R}=\left\{w^{R}: w \in L\right\}$
Examples:

$$
\begin{aligned}
& \{a b, a a b, b a b a\}^{R}=\{b a, b a a, a b a b\} \\
& L=\left\{a^{n} b^{n}: n \geq 0\right\} \\
& L^{R}=\left\{b^{n} a^{n}: n \geq 0\right\}
\end{aligned}
$$

Closure Properties of RL's	
Closure under Concatenation:	
Definition:	
Example:	$L_{1} L_{2}=\left\{x y: x \in L_{1}, y \in L_{2}\right\}$
	$\{a, a b, b a\} b, a a\}$
	$=\{a b, a a a, a b b, a b a a, b a b, b a a a\}$
Steps to obtain a finite automation accepting LIL2:	
I. Make an e-transition from all accept states in LI to	
the initial state in $\mathrm{L2}$	
2.Unmark all accepts states in LI 3. Remove the mark of the initial state in L2	

Closure Properties of RL's

Closure under Concatenation:

$$
L^{n}=\underbrace{L L \cdots L}_{n}
$$

$$
\{a, b\}^{3}=\{a, b\}\{a, b\}\{a, b\}=
$$

$$
\{a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b\}
$$

$$
L^{0}=\{\lambda\}
$$

$$
\{a, b b a, a a a\}^{0}=\{\lambda\}
$$

Closure Properties of RL's

Closure under Star-Closure (Kleene*):
Definition: $L^{*}=L^{0} \cup L^{1} \cup L^{2} \ldots$
Example:
$\{a, b b\}^{*}=\left\{\begin{array}{l}\lambda, \\ a, b b, \\ a a, a b b, b b a, b b b b, \\ a a a, a a b b, a b b a, a b b b b, \ldots\end{array}\right\}$

Closure Properties of RL's

Closure under Concatenation:

$$
\begin{aligned}
L= & \left\{a^{n} b^{n}: n \geq 0\right\} \\
L^{2}= & \left\{a^{n} b^{n} a^{m} b^{m}: n, m \geq 0\right\} \\
& a a b b a a a b b b \in L^{2}
\end{aligned}
$$

Closure Properties of RL's

Closure under Positive Closure:
Definition: $\quad L^{+}=L^{1} \bigcup L^{2} \bigcup \cdots$

$$
=L^{*}-\{\lambda\}
$$

Example:

$$
\{a, b b\}^{+}=\left\{\begin{array}{l}
a, b b, \\
a a, a b b, b b a, b b b b, \\
a a a, a a b b, a b b a, a b b b b, \ldots
\end{array}\right\}
$$

Closure Properties of RL's

Closure under Difference:
Theorem: If $L \& M$ are regular languages then $L-M$ is also regular.

- $L-M=L \cap M$
- $L=\{$ set of all strings ending in $a\}$
- $M=\{$ set of all strings ending in $a\}$
- $\mathrm{L}-\mathrm{M}=\phi$

Closure Properties of RL's

Closure under Homomorphism:
A homomorphism is a function h which substitutes a particular string for each symbol.
That is, $h(a)=x$, where a is a symbol and x is a string.
Given $w=a_{1} a_{2} \ldots a_{n}$, define

$$
h(w)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{n}\right) .
$$

Given a language, define

$$
h(L)=\{h(w) \mid w \in L\} .
$$

Closure Properties of RL's
Closure under Difference:
Theorem: If $L \& M$ are regular languages then $L-M$
is also regular.
- $L-M=L \cap M$
- $L=\{$ set of all strings ending in $a\}$
- $M=\{$ set of all strings ending in $a\}$
- $L-M=\phi$

Closure Properties of RL's
Closure under Homomorphism:
A homomorphism is a function h which substitutes a
particular string for each symbol.
That is, $h(a)=x$, where a is a symbol and x is a
string.
Given $w=a_{1} a_{2} \ldots a_{n}$, define
$h(w)=h\left(a_{1}\right) h\left(a_{2}\right) \ldots h\left(a_{n}\right)$.
Given a language, define
$h(L)=\{h(w) \mid w \in L\}$.

Closure Properties of RL's

Closure under Difference:
Theorem : If LI and L2 are regular languages, then so is LI- L2.

Example:

$$
\begin{aligned}
& \mathrm{LI}=\left\{\mathrm{a}, \mathrm{a}^{3}, \mathrm{a}^{5}, \mathrm{a}^{7},-----\right\} \\
& \mathrm{L} 2=\left\{\mathrm{a}^{2}, \mathrm{a}^{4}, \mathrm{a}^{6},----\right\} \\
& \mathrm{LI}-\mathrm{L} 2=\left\{\mathrm{a}, \mathrm{a}^{3}, \mathrm{a}^{5}, \mathrm{a}^{7}-\cdots--\right\} \\
& \mathrm{RE}=\mathrm{a}(\mathrm{a})^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \text { Closure Properties of RL's } \\
& \text { Closure under Homomorphism: } \\
& \text { Example: } \\
& \text { Let function } h \text { be defined as } \\
& \qquad \begin{array}{r}
h(0)=a b \text { and } h(\mathrm{I})=\varepsilon, \\
\text { then } h \text { is a string homomorphism. }
\end{array} \\
& \text { For examples, } \\
& \qquad \begin{array}{r}
\text { I. } h(001 \mathrm{I})=h(0) h(0) h(\mathrm{I}) h(\mathrm{I}) \\
=a b a b \varepsilon \varepsilon=a b a b .
\end{array} \\
& \qquad \begin{array}{l}
\text { 2. If } \mathrm{RE} r \\
r
\end{array} 1^{*} \mathrm{I} \text {, then } h(L(r))=(a b)^{*} .
\end{aligned}
$$

Closure Properties of RL's

Closure under Homomorphism:
Theorem - If L is an RL, then $h(L)$ is also an $R L$ where h is a homomorphism.

Closure Properties of RL's

Closure under Inverse Homomorphism:
Example:
Let $L=L\left((00+1)^{*}\right)$
Let string homomorphism h be defined as

$$
h(a)=01, h(b)=10 .
$$

It can be proved that

$$
h^{-1}(L)=L\left((b a)^{*}\right)
$$

Closure Properties of RL's

Closure under Inverse Homomorphism:
Let h be a homomorphism from some alphabet Σ to strings in another alphabet T. Let L be an RL over T. Then $h^{-1}(L)$ is the set of strings w such that $h(w)$ is in $L . h^{-1}(L)$ is read " h inverse of L."

Closure Properties of RL's
Closure under Inverse Homomorphism:
Let h be a homomorphism from some alphabet Σ to
strings in another alphabet T. Let L be an RL over T.
Then $h^{-1}(L)$ is the set of strings w such that $h(w)$ is
in $L . h^{-1}(L)$ is read " h inverse of $L . "$

Closure Properties of RL's
 Closure under Inverse Homomorphism:
 Theorem - If h is a homomorphism from alphabet Σ to alphabet T, and L is an RL, then $h^{-1}(L)$ is also an RL.

> Theorems for Closure Properties of RL's
> Let L and M be two RL's over alphabet
> - Theorem - The union $L U M$ is an RL.
> - Theorem - The complement $=\Sigma^{*}-L$ is an $R L\left(\Sigma^{*}\right.$ is the universal language)
> - Theorem - The intersection $L \cap M$ is an RL.
> - Theorem - The difference $L-M$ is an RL.
> - Theorem - The concatenation $L M$ and the closure L^{*} are RL's
> - Theorem - Reversal L^{R} of an $R L L$ is also an RL.

