

Properties of Regular Languages
Decision Properties of Regular Languages
Closure Properties of Regular Languages
Equivalence and Minimization of Automata

	Decision Properties of RLs	
Question:	Given regular language L and string W how can we check if $w \in L$?	
Answer:	Take the DFA that accepts L and check if w is accepted	
	Costas Busch - RPI	5

	Decision Properties of RLs
Question:	Given regular language L how can we check if L is empty: $(L = \emptyset)$?
Answer:	Take the DFA that accepts L Check if there is any path from the initial state to a final state
	Costas Busch - RPI

- Concatenation
- Homomorphism
 Inverse homomorphism

Closure under Union:

If L_1 and L_2 are any regular languages, $L_1 \cup L_2$ is also a regular language.

Proof I: Using DeMorgan's laws

 Because the regular languages are closed for intersection and complement, we know they must also be closed for union

$$L_1 \cup L_2 = \overline{L_1} \cap \overline{L_2}$$

Closure Properties of RL's

Closure under Union:

If L_1 and L_2 are any regular languages, $L_1 \cup L_2$ is also a regular language.

Proof 2: Product construction

- Same as for intersection, but with different accepting states
- Accept where either (or both) of the original DFAs accept
- Accepting state set is $(F_1 \times R) \cup (Q \times F_2)$

Closure Properties of RL's

Closure under Intersection:

Let L and M two languages, then their intersection is defined by:

 $LI \cap L2 = \{x \mid x \in LI \text{ and } x \in L2\}$

Let A_L and A_M two finite automata accepting L and M respectively:

Example:

 $\begin{array}{l} -L_1 = \{0x \mid x \in \{0, 1\}^*\} = \text{strings that start with } 0 \\ -L_2 = \{x0 \mid x \in \{0, 1\}^*\} = \text{strings that end with } 0 \\ -L_1 \cap L_2 = \{x \in \{0, 1\}^* \mid x \text{ starts and ends with } 0\} \end{array}$

Closure Properties of RL's

Closure under Reversal:

The **reversal** L^R of a language L is the language consisting of the reversals of all its strings.

The **reversal** of a string $w = a_1a_2, \dots a_n$ is $w^R = a_na_{n-1}$.

Closure Properties of RL's

Closure under Reversal: Definition: $L^R = \{ w^R : w \in L \}$ Examples:

$$\{ab, aab, baba\}^{R} = \{ba, baa, abab\}$$
$$L = \{a^{n}b^{n} : n \ge 0\}$$
$$L^{R} = \{b^{n}a^{n} : n \ge 0\}$$

 $\label{eq:closure Properties of RL's} Closure under Concatenation: Definition: Example: <math>L_1L_2 = \{xy: x \in L_1, y \in L_2\}$ $\{a, ab, ba\}\{b, aa\}$ $= \{ab, aaa, abb, abaa, bab, baaa\}$ Steps to obtain a finite automation accepting L1L2: I. Make an e-transition from all accept states in L1to the initial state in L2 2. Unmark all accepts states in L1

Closure Properties of RL's Closure under Concatenation: $L^{n} = \underbrace{LL \cdots L}_{n}$ $\{a,b\}^{3} = \{a,b\}\{a,b\}\{a,b\} =$ $\{aaa,aab,aba,abb,baa,bab,bba,bbb\}$ $L^{0} = \{\lambda\}$ $\{a,bba,aaa\}^{0} = \{\lambda\}$ CONSE BUSCH-RPI

Closure Properties of RL's Closure under Positive Closure: Definition: $L^+ = L^1 \cup L^2 \cup \cdots$ $= L^* - \{\lambda\}$ Example: $\{a, bb\}^+ = \begin{cases} a, bb, \\ aa, abb, bba, bbbb, \\ aaa, aabb, abbb, \dots \end{cases}$ Closure Properties of RL's Closure under Difference: Theorem : If L1 and L2 are regular languages, then so is L1– L2. Example: L1={a, a³, a⁵, a⁷,----} L2={a², a⁴, a⁶,----} L1-L2 = {a,a³, a⁵, a⁷----} RE=a(a)*

Closure Properties of RL'sClosure under Difference:Theorem: If L & M are regular languages then L – Mis also regular. $\cdot L - M = L \cap M$ $\cdot L = \{$ set of all strings ending in a $\}$ $\cdot M = \{$ set of all strings ending in a $\}$ $\cdot L - M = \phi$

Closure Properties of RL's

Closure under Homomorphism:

A homomorphism is a function h which substitutes a particular string for each symbol. That is, h(a) = x, where a is a symbol and x is a string. Given $w = a_1a_2...a_n$, define $h(w) = h(a_1)h(a_2)...h(a_n)$. Given a language, define $h(L) = \{h(w) \mid w \in L\}$.

Closure Properties of RL's

Closure under Homomorphism:

Theorem - If L is an RL, then h(L) is also an RL where h is a homomorphism.

Closure Properties of RL's

Closure under Inverse Homomorphism:

Let *h* be a homomorphism from some alphabet Σ to strings in another alphabet *T*. Let *L* be an RL over *T*. Then $h^{-1}(L)$ is the set of strings *w* such that h(w) is in *L*. $h^{-1}(L)$ is read "*h* inverse of *L*."

Closure Properties of RL's

Closure under Inverse Homomorphism:

Example: Let $L = L((00 + 1)^*)$ Let string homomorphism h be defined as h(a) = 01, h(b) = 10.It can be proved that $h^{-1}(L) = L((ba)^*)$

Closure Properties of RL's

Closure under Inverse Homomorphism:

Theorem - If *h* is a homomorphism from alphabet Σ to alphabet *T*, and *L* is an RL, then $h^{-1}(L)$ is also an RL.

Theorems for Closure Properties of RL's

Let *L* and *M* be two RL's over alphabet

- Theorem The union $L \cup M$ is an RL.
- Theorem The complement = $\Sigma^* L$ is an RL (Σ^* is the universal language)
- Theorem The intersection $L \cap M$ is an RL.
- Theorem The difference L M is an RL.
- Theorem The concatenation LM and the closure L^{\ast} are RL's (
- Theorem Reversal L^R of an RL L is also an RL.